Symplectic Rigidity for Anosov Hypersurfaces

نویسندگان

  • D. BURNS
  • R. HIND
چکیده

There is a canonical exact symplectic structure on the unit tangent bundle of a Riemannian manifold M given by pulling-back the symplectic two form ω and Liouville one form λ from the cotangent bundle T ∗M using the Riemannian metric. The pull-back of λ gives a contact form on level-sets of the length function on TM . The geodesic flow of M is given by the Reeb vectorfield of this contact structure, and the invariants of this flow are very important invariants of the symplectic manifold with boundary, or even, in some cases, of the open symplectic manifold. In such favorable circumstances, symplectic equivalence can apply much stronger rigidity results. For example, the following result is a straightforward application of the symplectic homology theory, see [4], and a theorem of J. Otal [18] and C. Croke [5].

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

-pinched Anosov Diffeomorphism and Rigidity

Let / be a C°° Anosov diffeomorphism of a compact man-ifold M, preserving a smooth measure. If / satisfies the |-pinching assumption defined below, it must preserve a continuous affine connection for which the leaves of the Anosov foliations are totally geodesic, geodesically complete, and flat (its tangential curvature is defined along individual leaves). If this connection, which is the uniqu...

متن کامل

Linear Weingarten hypersurfaces in a unit sphere

In this paper, by modifying Cheng-Yau$'$s technique to complete hypersurfaces in $S^{n+1}(1)$, we prove a rigidity theorem under the hypothesis of the mean curvature and the normalized scalar curvature being linearly related which improve the result of [H. Li, Hypersurfaces with constant scalar curvature in space forms, {em Math. Ann.} {305} (1996), 665--672].  

متن کامل

On Uniformly Quasiconformal Anosov Systems

We show that for any uniformly quasiconformal symplectic Anosov diffeomorphism of a compact manifold of dimension at least 4, its finite cover is C∞ conjugate to an Anosov automorphism of a torus. We also prove that any uniformly quasiconformal contact Anosov flow on a compact manifold of dimension at least 5 is essentially C∞ conjugate to the geodesic flow of a manifold of constant negative cu...

متن کامل

Geometric Anosov flows of dimension five with smooth distributions

We classify the five dimensional C Anosov flows which have C-Anosov splitting and preserve a smooth pseudo-Riemannian metric . Up to a special time change and finite covers, such a flow is C flow equivalent either to the suspension of a symplectic hyperbolic automorphism of T4, or to the geodesic flow on a three dimensional hyperbolic manifold.

متن کامل

Hamiltonian Elliptic Dynamics on Symplectic 4-manifolds

We consider C Hamiltonian functions on compact 4-dimensional symplectic manifolds to study elliptic dynamics of the Hamiltonian flow, namely the so-called Newhouse dichotomy. We show that for any open set U intersecting a far from Anosov regular energy surface, there is a nearby Hamiltonian having an elliptic closed orbit through U . Moreover, this implies that for far from Anosov regular energ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005